Медь м3 чем отличается мягкий от твердого. Технические характеристики различных марок меди

Главная / Без вложений

Медь относится к самым распространенным цветным металлам. Она обладает высокими антикоррозийными свойствами как при нормальных атмосферных условиях, так в пресной и морской воде и других агрессивных средах. Однако медь не устойчива в аммиаке и сернистых газах.

Медь легко поддаётся обработке давлением и пайкой. Обладая невысокими литейными свойствами, медь тяжело режется и плохо сваривается. На практике медь используется в виде прутков, листов, проволоки, шин и труб.

Бескислородная М0 (0,001% O 2) и раскисленная М1 (0,01% О 2) медь широко применяется в электронике, электровакуумной технике, в электротехнической промышленности.

Медь бывает разных марок: М00, М0, М1, М2 и М3. Марки меди определяются чистотой её содержания.

Марка меди

Процентное содержание меди

В меди марок М1р, М2р и М3р содержится 0,01% кислорода им 0,04% фосфора. В составе меди марок М1, М2 и М3 процентное содержание кислорода составляет 0,05-0,08 %.

Марка М0б характеризуется полным отсутствием кислорода. Процентное содержание кислорода в марка МО составляет до 0,02%.

Как примеси влияют на свойства меди

В зависимости от того, как примеси взаимодействуют с медью, они подразделяются на три группы:

· Примеси, которые образуют с медью твёрдые растворы - никель, сурьма, алюминий, цинк, железо, олово и др. Эти примеси оказывают существенное влияние на электропроводность и теплопроводность меди, снижая их. Ввиду этого в качестве проводников тока используют медь М0 и М1, в состав которых входит не более 0,002 As и 0,002 Sb. Горячая обработка давлением затрудняется, если в ней содержится сурьма.

· Примеси, которые практически не растворяются в меди – висмут, свинец и др. Практически не влияют на электропроводность меди, но затрудняют её обработку давлением.

· Хрупкие химические соединения, образующиеся в примеси меди с серой и кислородом. Кислород, входящий в состав меди, в значительной мере снижает её прочность и уменьшает электропроводимость. Сера способствует улучшению обрабатываемости меди резанием.

БРОНЗА

Бронзой называется сплав меди с алюминием, кремнием, оловом, бериллием и другими элементами, кроме цинка. Бронзы бывают алюминиевыми, кремниевыми, оловянными, бериллиевыми и т.д. – в зависимости от легирующего элемента.

Маркировка бронзы представляет собой определенную последовательность, начинающуюся с буквосочетания «Бр», после которого указываются легирующие элементы. Легирующие элементы перечисляются, начиная с элемента, который находится в максимальном процентном содержании относительно остальных.

Все бронзы подразделяются на оловянные и безоловянные

Оловянные бронзы

Оловянные бронзы применяются в химической промышленности и в качестве антифрикционных материалов благодаря высоким антикоррозийным и антифрикционным свойствам.

Легирующие элементы оловянных бронз – фосфор, цинк, никель. Цинк, входящий в состав оловянных бронз в количестве до 10%, служит для того, чтобы стоимость бронз стала меньше. Фосфор и свинец способствуют повышению антифрикционных свойств бронзы и улучшают их обрабатываемость резанием.

Литейные оловянные бронзы применяются:

· Деформированные бронзы - БрОФ6,5-0,4; БрОЦ4-3; БрОЦС4-4-2,5 – используются в качестве пружин, антифрикционных деталей, мембран

· Литейные бронзы - БрО3Ц12С5, БрО3Ц12С5, БрО4Ц4С17 – используются в антифрикционных деталях, арматуре общего назначения

Безоловянные бронзы – это двойные или многокомпонентные бронзы без олова, в состав которых входя такие элементы как марганец, алюминий, свинец, железо, никель, кремний, бериллий.

Алюминиевые бронзы обладают высокими технологическими и механическими свойствами, коррозийной стойкостью в условиях тропического климата и в морской воде. Для глубокой штамповки на практике используют однофазные бронзы, двухфазные бронзы применяются в виде фасонного литья и подвергают горячей деформации.

Алюминиевые бронзы, обладая более низкими литейными свойствами в сравнении с оловянными бронзами, способствуют более высокой плотности отливок.

Кремнистые бронзы . Кремний, входящий в состав бронзы (до 3,5%), повышает её пластичность и прочность. В сочетании с марганцем и никелем коррозийные и механические свойства кремнистых бронз повышаются. Они широко применяются при работе в агрессивной среде, для изготовления пружинящих деталей, которые должны работать при температуре до 2500°C.

Бериллиевыне бронзы обладают высокой прочностью благодаря термической обработке. Для них характерны высокие характеристики упругости, предела текучести и временного сопротивления, устойчивы к коррозии. Применяются в электронной технике, для пружинящих контактов, мембран, деталей, которые работают на износ.

Свинцовые бронзы представляют собой сплавы, состоящие из включения свинца, который практически не растворяется в меди, и кристаллов меди. Высокие антифрикционные свойства свинцовых бронз позволяют применять их для изготовления деталей, которые работают в условиях больших скоростей и повышенного давления (вкладыши подшипников скольжения). За счёт высокой теплопроводности, свинцовые бронзы БрС30 способствуют отведению теплоты, возникающей при трении.

Бронзы, легированные оловом и никелем, отличаются повышенными коррозийными и механическими свойствами.

Безоловянные бронзы применяются:

· Алюминиевые бронзы - БрАЖ9-4, БрАЖН10-4-4, БрА9Ж3Л, БрА10Ж3Мц2 – применяются для обработки давлением, в качестве деталей химической аппаратуры, арматуры и антифрикционных деталей

· Кремниевые бронзы - БрКМц3-1- применяются в качестве проволоки для пружин, лент, арматуры

· Бериллиевая бронза - БрБ2 – используется как прутки, проволоки для пружин, ленты, полосы

· Свинцовая бронза- БрС30- применяется в антифрикционных деталях

ЛАТУНЬ

Сплав меди с цинком, процентное содержание цинка в котором составляет от 5 до 45%, называется латунью. Латунь, в состав которой входит 2-20% цинка, называется томпак или красная латунь. Если содержание цинка равно 20-36%, то такая латунь называется жёлтой. Латуни, с более чем 45% цинка в своём составе, применяются крайне редко.

Классификация латуней:

· Простые (двухкомпонентные) – сплавы которые состоят из цинка и меди с незначительными примесями других элементов;

· Специальные (многокомпонентные) латуни в своём составе помимо меди и цинка включают ряд других легирующих элементов.

Простые латуни

Двухкомпонентные латуни обозначаются заглавной буквой «Л», за которой следует двузначная цифра, определяющая среднее значение процентного содержания меди в сплаве (Л80-латунь, в состав которой входит 80% меди и 20% цинка).

Классификация простых латуней приведена в таблице:

Простые латуни легко поддаются обработке давлением. Обычно, они поставляются в виде труб и трубок, отличающихся по форме сечения, в виде лент, полос, проволоки, листов. Для изделий из латуни, обладающих высоким внутренним напряжением, характерно растрескивание, которого можно избежать, если перед длительным хранением провести отжиг при низких температурах (200-300°C).

Специальные латуни

Многокомпонентные латуни представлены в большей разновидности, чем простые.

Маркировка специальных латуней начинается с заглавной буквы «Л», после которой обозначается последовательность легирующих элементов сплава (за исключением цинка) и их процентное содержание, начиная с преобладающего в сплаве элемента. Количество цинка определяется в соответствии с разницей от 100%.

Легирующие элементы латуни, среди которых основными являются кремний, марганец, свинец алюминий, железо и никель, оказывают существенное влияние на свойства латуней:

· Олово способствует повышению прочности и коррозийной стойкости латуней в морской воде;

· Марганец (особенно сочетаясь с оловом, железом и алюминием), а также никель повышают устойчивость сплава к коррозии и его прочность;

· Свинец, входящий в состав сплава, ухудшает его механические свойства, обеспечивая при этом лёгкость в обработке резанием, поэтому латуни, которые предполагают дальнейшую обработку см помощью станков-автоматов, имеют именно свинец в качестве основного легирующего элемента;

Специальные латуни применяются:

· Деформируемые латуни ЛАЖ60-1-1 применяются в качестве прутков, труб, ЛЖМц59-1-1 и ЛС59-1 в качестве труб, прутков, полос, проволоки

· Литейные латуни ЛЦ40Мц3Ж применяются в деталях, сложных по своей конфигурации, гребных винтах и лопастях и др.; ЛЦ30А3- детали, устойчивые к коррозии; ЛЦ40С нашли применение в арматуре, сепараторах шариковых втулках и др.

Изготовление шестигранных, квадратных и круглых прутков происходит холоднодеформированным тянутым и горячедеформированным прессованным методом. Изготовление их выполняется по требованиям, определенных ГОСТ 1535 – 91. Для меди М3 существует ГОСТ 859, который применяется для использования данной продукции.

Медь занимает 29 позицию в периодической таблице и является незаменимой при машиностроении, электрике, криогенике и др. В любом справочнике по технологии можно найти полную информацию о качестве меди. Прочность сплава при температуре 20 градусов составляет 17 кг/мм2. Его придел текучести начинается при t 500 гр и составляет 2,2 кг/мм2. Для сравнения можно заметить, что обычная сталь при таких условиях имеет предел текучести 100 кг/мм2. Благодаря полученному сравнению, можно прийти к заключению, что техническая характеристика медного сплава очень высокая по сравнению с обычным металлом. Продажа медного проката

Механические и физические свойства меди М3



Рассматривая твердость меди, можно прийти к заключению, что данный металл тверже серебра, но гораздо мягче железа. Разница составляет в полтора раза.

Медь имеет довольно высокую характеристику, указывающую на тепловую и электрическую ценность, при этом механические свойства данного сплава остаются на высоте. Она превосходно проводит тепло и электричество. Ее показатели очень высокие и уступают лишь серебру. Алюминий имеет электро-сопротивления в два раза больше, а железо превышает его в шесть раз.

Какие ассоциации у вас вызывает слово металл? Люди с узким мировозрение скажут, что ничего в этом слове особенного нет, но у большинства оно ассоциируется в первую очередь с надежностью и, почему то, с жестким ударом) Сейчас даже представить сложно как раньше человечество обходилось от такого выносливого и почти не подвергаемого разрушению вещества. Но так как сейчас все отрасли тесно связаны с металлом, а именно изделий из него, нужна компания, которая будет продавать металлопрокат по доступным ценам. Одной из таких полезных и ответственных фирм является Металлопрокат в Санкт-Петербурге.

Изготавливают из меди марок M1, М1Р, М2, М2Р, М3, М3Р согласно ГОСТу 495-92, химический состав которых соответствует ГОСТу 859.

Среди огромного ассортимента разновидностей продукции вы сможете выбрать для себя наиболее подходящее (лист медный, арматурные пряди, уголки и т.д) для вас и купив быть уверенным в его прочности, ведь именно прочность определяет 100% качества любого металла.

Технические характеристики листа медного

Каждый сплав металла имеет свои индивидуальные характеристики, которые определяют их применение и срок службы. Определившись в назначении вы смело подбираете себе подходящее, учитывая все особенности. Например, лист медный очень удобен в эксплуатации, а вот титановые листы отличаются хорошей прочностью и требует неплохого умения его использования.

Вес листа медного

Почти каждое изделие, выпускаемое с завода имеет стандартный вес для удобной транспортировки и розфасовки. Только представьте, что бы было если бы каждый металл выпускался в произвольном размере. Это бы очень усложнило вам жизнь.

Теоретическая масса листов из меди М1-М3, ГОСТ
495-92,кг.
Толщина Теретичкая
масса 1м листа
Толщина Теретичкая
масса 1м листа
листа,мм Размер
листа,мм
листа,мм Размер
листа,мм
1000х1000 600х1500 1000х2000 1000х1000 600х1500 1000х2000
0.4 3,56 3,2 7,12 4,5 40,05 36,06 80,1
0.5 4,45 4,01 8,9 5 44.50 40.05 89.00
0.6 5,34 4,81 10,68 5,5 48,95 44,06 97,9
0,7 6,23 5,61 12,46 6 53,4 48,06 106,8
0,8 7,12 6,41 14,24 6,5 57,85 52.07 115,7
0,9 8,01 7,21 16,02 7 62,3 56,07 124,6
1 8,9 8,01 17,8 7,5 66,75 60,08 133,5
1,1 9,79 8,81 19,58 8 71,2 64,08 142,4
1,2 10,68 9,61 21,36 9 80,1 72,09 160,2
1,3 11,57 10,41 23,14 10 89 80,1 178
1,4 12,02 10,81 24,03 11 97,9 88,11 195,8
1,4 12,4 11,21 24,92 12 106,8 96,12 213,6
1,5 13,35 12,02 26,7 13 115 104,13 231,4
1,6 14,24 12,82 12,82 14 124,6 112,14 249,2
1,7 14,69 13,22 29,37 15 133,5 120,15 267
1,8 16,02 14,42 32,04 16 142,4 128,16 248,8
2 17,8 16,02 35,6 17 151,3 136,17 302,6
2,2 19,58 17,62 39,16 18 160,2 144,18 320,4
2,3 20,03 18,02 40,05 19 169,1 152,19 338,2
2,5 22,25 20,03 44,5 20 178 160,2 356
2,8 24,48 22,03 48,95 21 186,9 168,21 373,8
30 26,7 24,03 53,4 22 195,8 176,22 391,6
3,5 31,15 28,04 62,3 24 213,6 193,24 427,2
4 35,6 32,04 71,2 25 222,5 200,25 445

Размеры листа медного

Размеры так же должны соответствовать стандарту, установленному определенными инстанциями. Под заказ вы сможете получить такой товар, как лист медный с определенным размером, уточненным при заказе.
Горячекатаные листы изготовляют: шириной от 600 до до 3000мм; длиной от 1000 до 6000мм.

ГОСТ 495-92

Все изделия стальной промышленности изготовляются согласно законам и стандартам установленных государством и соответствуют всем нужным технологиям для производства качественного металла.
Марка стали.
Основой определения марки стали состоит химический состав. Каждый металл имеет свою уникальную марку. И даже лист медный твердый и лист медный мягкий содержат отличия.

Заказать медный лист и проконсультироваться по металлопрокату Вы можете позвонив по телефонам, указанным в верху и внизу сайта, звоните!

МЕДЬ и МЕДНЫЙ ПРОКАТ

Марки и химический состав технической меди

Марки меди и их химический состав определен в ГОСТ 859-2001 . Сокращенная информация о марках меди приведена ниже (указано минимальное содержание меди и предельное содержание только двух примесей – кислорода и фосфора):

Марка Медь О 2 P Способ получения, основные примеси
М00к 99.98 0.01 - Медные катоды: продукт электролитическогорафинирования, заключительная стадия переработки медной руды.
М0к 99.97 0.015 0.001
М1к 99.95 0.02 0.002
М2к 99.93 0.03 0.002
М00 99.99 0.001 0.0003 Переплавка катодов в вакууме, инертной или восстановительной атмосфере. Уменьшает содержание кислорода.
М0 99.97 0.001 0.002
М1 99.95 0.003 0.002
М00 99.96 0.03 0.0005 Переплавка катодов в обычной атмосфере. Повышенное содержание кислорода. Отсутствие фосфора
М0 99.93 0.04 -
М1 99.9 0.05 -
М2 99.7 0.07 - Переплавкалома . Повышенное содержание кислорода, фосфора нет
М3 99.5 0.08 -
М1ф 99.9 - 0.012 - 0.04 Переплавка катодов и лома меди с раскислением фосфором. Уменьшает содержание кислорода, но приводит к повышенному содержанию фосфора
М1р 99.9 0.01 0.002 - 0.01
М2р 99.7 0.01 0.005 - 0.06
М3р 99.5 0.01 0.005 - 0.06

Первая группа марок относится к катодной меди, остальные - отражают химический состав различных медных полуфабрикатов (медные слитки, катанка и изделия из неё, прокат).

Специфические особенности меди, присущие разным маркам, определяются несодержанием меди (различия составляют не более 0.5%), а содержанием конкретных примесей (их количество может различаться в 10 – 50 раз). Часто используют классификацию марок меди по содержанию кислорода:

Бескислородная медь (М00 , М0 и М1 ) с содержанием кислорода до 0.001%.

Рафинированная медь (М1ф, М1р, М2р, М3р) с содержанием кислорода до 0.01%, но с

повышенным содержанием фосфора.

Медь высокой чистоты (М00, М0, М1) с содержанием кислорода 0.03-0.05%.

Медь общего назначения (М2, М3) с содержанием кислорода до 0.08%.

Примерное соответствие марок меди, выпускаемой по разным стандартам, приведено ниже:

ГОСТ

EN , DIN

М00

Cu-OFE

М0 Cu-PHC , OF-Cu
М1

Cu-OF , Cu-OF1

М1

Cu-ETP, Cu-ETP1,Cu-FRTP, Cu-FRHC,

SE-Cu, E-Cu, E Cu57, E Cu58
М1 ф Cu-DHP , SF-Cu
М1р Cu-DLP , SW-Cu

Разные марки меди имеютразличное применение, а отличия в условиях их производства определяют существенные различия в цене.

Для производства кабельно-проводниковой продукции катоды переплавляют по технологии, которая исключает насыщение меди кислородом при изготовлении продукции. Поэтому медь в таких изделях соответствует маркамМ00, М0 , М1 .

Требованиям большинства технических задач удовлетворяют относительно дешевые марки М2 и М3. Это определяет массовое производство основных видов медного проката из М2 и М3.

Прокат из марок М1, М1ф, М1р, М2р, М3р производится в основном для конкретных потребителей и стоит намного дороже.

Физические свойства меди

Главное свойство меди, которое определяет её преимущественное использование – очень высокая электропроводность (или низкое удельное электросопротивление). Такие примеси как фосфор, железо, мышьяк, сурьма, олово, существенно ухудшают её электропроводность. На величину электропроводности существенное влияние оказывает способ получения полуфабриката и его механическое состояние. Это иллюстрируется приведенной ниже таблицей:

Удельное электрическое сопротивление меди для различных полуфабрикатов разных марок (гарантированные значения) при 20 о С.
мкОм*м марка Вид и состояние полуфабриката ГОСТ, ТУ

0.01707

М00

Слитки (непрерывное вертикальное литье)

193-79

М00

Катанка кл.А (кислород : 0.02-0.035%)

ТУ 1844 010 03292517

2004

0.01718

Катанка кл.В (кислород : 0.045%)

0.01724

Катанка кл.С (кислород : 0.05%)

193-79

Слитки (горизонтальное литье)

0.01748

Ленты

1173-2006

Прутки отожженные

1535-2006

0.01790

Прутки полутвердые, твердые, прессованные

Различия в сопротивлении катанки марок М00, М0 и М1, обусловлены разным количеством примесей и составляют около 1%. В то же время различия в сопротивлении, обусловленные разным механическим состоянием, достигают 2 – 3%. Удельное сопротивление изделий из меди маркиМ2 примерно 0.020 мкОм*м.

Второе важнейшее свойство меди - очень высокая теплопроводность.

Примеси и легирующие добавки уменьшают электро- и теплопроводность меди, поэтому сплавы на медной основе значительно уступают меди по этим показателям. Значения параметров основных физических свойств меди в сравнении с другими металлами приведены в таблице (данные приведены в двух разных системах единиц измерения):

Показатели

при

Единица

измерения

Медь

Алю-

миний

Латунь

Л63, ЛС

Бронза

БрАЖ

Сталь 12Х18Н10

Удельное

элетросопротивление,

мкОм * м

0.0172 –

0.0179

0.027-

0.030

0.065

0.123

0.725

Теплопроводность,

кал/см * с * град

0.93

0.52

0.25

0.14

0.035

Вт/м *град


386 - 390

По электро- и теплопроводности медь незначительно уступает только серебру.

Влияние примесей и особенности свойств меди различных марок

Отличия в свойствах меди разных марок связаны с влиянием примесей на базовые свойства меди. О влиянии примесей на физические свойства (тепло- и электропроводность) говорилось выше. Рассмотрим их влияние на другие группы свойств.

Влияние на механические свойства .

Железо, кислород, висмут, свинец, сурьма ухудшают пластичность. Примеси, малорастворимые в меди (свинец, висмут, кислород, сера), приводят к хрупкости при высоких температурах.

Температура рекристаллизации меди для разных марок составляет 150-240 о С. Чем больше примесей, тем выше эта температура. Существенное увеличение температуры рекристаллизации меди дает серебро, цирконий. Например введение 0.05% Ag увеличивает температуру рекристаллизации вдвое, что проявляется в увеличении температуры размягчения и уменьшении ползучести при высоких температурах, причем без потери тепло- и электропроводности.

Влияние на технологические свойства .

К технологическим свойствам относятся 1) способность к обработке давлением при низких и высоких температурах, 2) паяемость и свариваемость изделий.

Примеси, особенно легкоплавкие,формируют зоны хрупкости при высоких температурах, что затрудняет горячую обработку давлением. Однако уровень примесей в марках М1 и М2 обеспечивают необходимую технологическую пластичность.

При холодном деформировании влияние примесей заметно проявляется при производстве проволоки. При одинаковом пределе прочности на разрыв (? в = 16 кгс /мм 2 ) катанки из марок М00, М0 и М1 имеют разное относительное удлинение ? (38%, 35% и 30% соответственно). Поэтому катанка класса А (ей соответствует марка М00) более технологична при производстве проволоки, особенно малых диаметров. Использование бескислородной меди для производства проводников тока обусловлено не столько величиной электропроводности, сколько технологическим фактором.

Процессы сварки и пайки существенно затрудняются при увеличении содержания кислорода, а также свинца и висмута.

Влияние кислорода и водорода на эксплуатационные свойства .

При обычных условиях эксплуатационныесвойства меди (прежде всего долговечность эксплуатации) практически одинаковы для разных марок. В то же время при высоких температурахможет проявиться вредное влияние кислорода, содержащегося в меди. Эта возможность обычно реализуется при нагреве меди в среде, содержащей водород.

Кислород изначально содержится в меди марокМ0, М1, М2, М3. Кроме этого, если бескислородную медь отжечь на воздухе при высоких температурах, то вследствие диффузии кислорода поверхностный слой изделия станет кислородсодержащим.Кислород в меди присутствует в виде закиси меди ,которая локализуется по границам зерен.

Кроме кислорода в меди может присутствовать водород. Водород попадает в медь в процессе электролиза или при отжиге в атмосфере, содержащей водяной пар. Водяной пар всегда присутствует в воздухе. При высокой температуре он разлагается с образованием водорода, который легко диффундирует в медь.

В бескислородной меди атомы водорода располагаются в междоузлиях кристаллической решетки и особо не сказываются на свойствах металла.

В кислородсодержащей меди при высоких температурах водородвзаимодействует с закисью меди. При этом в толще меди образуется водяной пар высокого давления, что приводит к вздутиям, разрывам и трещинам. Это явление известно как «водородная болезнь» или «водородное охрупчивание». Оно проявляется при эксплуатации медного изделия при температурах свыше 200 о С в атмосфере, содержащей водород или водяной пар.

Степень охрупчивания тем сильнее, чем больше содержание кислорода в меди и выше температура эксплуатации. При 200 о С срок службы составляет1.5 года, при 400 о С - 70 часов.

Особенно сильно оно проявляется в изделиях малой толщины (трубки, ленты).

При нагреве в вакууме изначально содержащийся в меди водород взаимодействует с закисью меди и также ведет к охрупчиванию изделия и ухудшению вакуума. Поэтому изделия, которые эксплуатируются при высокой температуре, производятся из бескислородных (рафинированных) марок меди М1р, М2р, М3р.

Механические свойства медного проката

Большая часть медного проката, поступающего в свободную продажу, производится из марки М2. Прокат из марки М1 производится в основном под заказ, кроме того он примерно на 20% дороже.

Холоднодеформированный прокат – это тянутые (прутки, проволока, трубы) и холоднокатаные (листы, лента, фольга) изделия. Он выпускается в твердом, полутвердом и мягком (отожженном) состояниях. Такой прокат маркируется буквой «Д», а состояния поставки буквами Т, П или М.

Горячедеформированный прокат – результат прессования (прутки, трубы) или горячей прокатки (листы, плиты) при температурах выше температуры рекристаллизации. Такой прокат маркируется буквой «Г». По механическим свойствам горячедеформированный прокат близок (но не идентичен) к холоднодеформированному прокату в мягком состоянии.

Параметры при комнатной темп.

Модуль упругости E , кгс /мм 2

11000

13000

Модуль сдвига G , кгс /мм 2

4000

4900

Предел текучести ? 0.2 , кгс /мм 2

5 - 10

25 - 34

Предел прочности ? в , кгс /мм 2

19 – 27

31 – 42

Относ. удлинение ?

40 – 52

2 - 11

Твердость НВ

40 - 45

70 - 110

Сопротивление срезу, кгс /мм 2

10 - 15

18 - 21

Ударная вязкость,

16 - 18

Обрабатываем. резанием, % к Л63-3

Предел усталости ? -1 при 100 млн циклов

Высокий предел прочности на сжатие (55 - 65 кгс/мм 2 ) в сочетании с высокой пластичностью определяет широкое использование медив качестве прокладок в уплотнениях неподвижных соединений с температурой эксплуатации до 250 о С (давление 35Кгс\см 2 для пара и 100 Кгс\см 2 для воды).

Медь широко используется в технике низких температур, вплоть до гелиевых. При низких температурах она сохраняет показатели прочности, пластичности и вязкости, характерные для комнатной температуры. Наиболее часто используемое свойство меди в криогенной технике – её высокая теплопроводность. При криогенных температурах теплопроводность марок М1 и М2становится существенной, поэтому в криогенной технике применение марки М1 становится принципиальным.

Медные прутки выпускаются прессованными (20 – 180 мм) и холоднодеформированными, в твердом, полутвердом и мягком состояниях (диаметр 3 - 50 мм)по ГОСТ 1535-2006.

Плоский медный прокат общего назначения выпускается в виде фольги, ленты, листов и плит по ГОСТ 1173-2006:

Фольга медная – холоднокатаная: 0.05 – 0.1 мм (выпускается только в твердом состоянии)

Ленты медные - холоднокатаные: 0.1 – 6 мм.

Листы медные - холоднокатаные: 0.2 – 12 мм

Горячекатаные:3 – 25 мм (механич. свойства регламентируются до 12 мм)

Плиты медные – горячекатаные:свыше 25 мм (механические свойства не регламентируются)

Горячекатаные и мягкие холоднокатаные медные листы и ленты выдерживают испытание на изгиб вокруг оправки диаметром равным толщине листа. При толщине до 5 мм они выдерживают изгиб до соприкосновения сторон, а при толщине 6 – 12 мм - до параллельности сторон. Холоднокатанные полутвердые листы и ленты выдерживают испытание на изгиб на 90 град.

Таким образом допустимый радиус изгиба медных листов и лент равен толщине листа (ленты).

Глубина выдавливания лент и листов пуансоном радиусом 10 мм составляет не менее 7 мм для листов толщиной 0.1-0.14 мм и не менее 10 мм для листов толщиной 1-1.5 мм. По этому показателю (выдавливаемость) медь уступает латуням Л63 и Л68.

Медные трубы общего назначения изготавливаются холоднодеформированными (в мягком, полутвердом и твердом состояниях) и прессованными (больших сечений) по ГОСТ 617-2006.

Медные трубы используются не толькодля технологических жидкостей, но и для питьевой воды. Медь инертна по отношению к хлору и озону, которые используются для очистки воды, ингибирует рост бактерий, при замерзании воды медные трубы деформируются без разрыва. Медные трубы для воды производятся по ГОСТ Р 52318-2005 , для них ограничено содержание органических веществ на внутренней поверхности. Минимальные радиусы изгиба и допустимые давления для мягких медных труб приведены ниже:

Размер трубы, мм

Допустимое

давление, бар

Радиус изгиба, мм

Размер трубы

Допустимое

давление, бар

Дюймы (мм)

1/4” (6.35*0.8)

10*1

3/8” (9.52*0.8)

12*1

1/2” (12.7*0.8)

14*1

90 52

16*1

60

5/8” (15, 87*1)

18*1

3/4” (19,05*1)

20*1

60 75

22*1

80

7/8” (22.22*1)

Коррозионные свойства меди .

При нормальных температурах медь устойчива в следующих средах:

Сухой воздух

Пресная вода (аммиак, сероводород, хлориды, кислоты ускоряют коррозию)

В морской воде при небольших скоростях движения воды

В неокислительных кислотах и растворах солей (в отсутствии кислорода)

Щелочные растворы (кроме аммиака и солей аммония)

Сухие газы-галогены

Органические кислоты, спирты, фенольные смолы

Медь неустойчива в следующих средах:

Аммиак, хлористый аммоний

Окислительные минеральные кислоты и растворы кислых солей

Коррозионные свойства меди в некоторых средах заметно ухудшаются с увеличением количества примесей.

Контактная коррозия .

Допускается контакт меди с медными сплавами, свинцом, оловом во влажной атмосфере, пресной и морской воде. В то же время не допускается контакт с алюминием, цинком вследствие их быстрого разрушения.

Свариваемость меди

Высокая тепло- и электропроводность меди затрудняют её электросварку (точечную и роликовую). Особенно это касается массивных изделий. Тонкие детали можно сварить вольфрамовыми электродами. Детали толщиной более 2-х мм можно сваривать нейтральным ацетилено-кислородным пламенем. Надежный способ соединения медных изделий – пайка мягкими и твердыми припоями. Подробно о сварке меди см www.weldingsite.com.ua

Медные сплавы

Техническая медь имеет низкую прочность и износоустойчивость, плохие литейные и антифрикционные свойства. Этих недостатков лишены сплавы на медной основе - латуни и бронзы . Правда эти улучшения достигаются за счет ухудшения тепло- и электропроводности.

Имеются особые случаи, когда нужно сохранить высокую электро- или теплопроводность меди, но придать ей жаропрочность или износоустойчивость.

При нагревании меди выше температурырекристаллизации происходит резкое снижение предела текучести и твердости. Это затрудняет использование меди в электродах для контакной сварки. Поэтому, для этой цели используют специальные медные сплавы с хромом, цирконием, никелем, кадмием (БрХ, БрХЦр, БрКН, БрКд). Электродные сплавы сохраняютотносительно высокую твердость и удовлетворительную электро- и теплопроводностьпри температурах сварочного процесса (порядка 600С ).

Жаропрочностьдостигается также легированием серебром. Такие сплавы (МС) имеют меньшую ползучесть при неизменной электро- и теплопроводности.

Для использования в подвижных контактах (коллекторные пластины, контактный провод) применяют медь с небольшим уровнем легирования магнием или кадмием БрКд, БрМг. Они имеют повышенную износоустойчивость при высокой электропроводности.

Для кристаллизаторов используют медь с добавками железа или олова. Такие сплавы имеют высокую теплопроводность при повышенной износоустойчивости.

Низколегированные марки меди по сути являются бронзами, но часто их относят к группе медного проката с соответствующей маркировкой (МС, МК, МЖ) .


© 2024 youmebox.ru -- Про бизнес - Портал полезных знаний