Обработка твердых материалов. Твердый сплав

Главная / Из-за Рубежа

Пятишпиндельный станок от Fives.
Фрезерно-копировальный станок Fives Cincinnati XT оснащен пятью шпинделями для обработки титановых деталей

Новые шпиндельные соединения компании Kennametal повышают надежность и производительность контурно-фрезерного станка Cincinnati для крупносерийного производства титановых деталей.

В период устойчивого развития таких требовательных отраслей промышленности, как производство самолетов гражданской авиации, вся цепочка поставок проходит жесткую проверку. Это обусловлено необходимостью поддержания высоких стандартов качества и соблюдения сроков.

Для машиностроительного предприятия Fives Cincinnati это знакомо: на заводе компании в г. Хеброн, штат Кентукки, производятся многоцелевые станки, системы для намотки композитного волокна и многошпиндельные контурно-фрезерные станки Cincinnati. Согласно утверждениям компании, 650 контурно-фрезерных станков которой работают по всему миру, любой используемый в гражданской авиации реактивный самолет так или иначе был изготовлен с применением технологии контурного фрезерования Cincinatti.

Центр наивысшей активности.
Рабочая зона пятишпиндельного копировально-фрезерного станка Fives Cincinnati XT

Последнее поколение станков Cincinnati XTi с возможностью трех- или пятишпиндельной компоновки с подвижным порталом впечатляет во многих отношениях. Они были спроектированы для предприятий, занимающихся обработкой различных видов материалов. Таким образом, шпиндели с частотой вращения 7000 об/мин могут резать алюминий и сталь, а шпиндели с высоким крутящим моментом (2523 Нм) способны обрабатывать титан и другие твердые сплавы. Более того, компания позиционирует XTi как «единственную многошпиндельную платформу для черновой обработки титана» и утверждает, что их скорость съема металла, составляющая 100 кубических дюймов в минуту, является рекордной в своей области.

Для XTi с перемещением 4267 мм (поэтапно увеличиваемой на 3658 мм) по оси X, 3683 мм по оси Y и 711 мм по оси Z теперь можно выбрать шпиндельные соединения KM4X100 компании Kennametal Inc.

Твердость титана при его контурной обработке или фрезеровании с меньшим или большим шагом постоянно создает трудности в плане съема металла. Повышение эффективности при обработке твердых сплавов предполагает максимальную скорость съема металла, несмотря на значительные усилия и низкую скорость резания.

Соединение для удаления.
Шпиндельное соединение KM4X100 играет важную роль в достижении максимальной скорости съема металла

Компания Fives Cincinnati, как и другие машиностроительные предприятия, ответила на этот вызов повышением жесткости станков и улучшением характеристик демпфирования. Такие улучшения позволили свести к минимуму вибрацию, негативно влияющую на качество деталей, объем выпуска продукции и срок службы инструментов, увеличив при этом производительность. Однако соединение инструмент-шпиндель все еще остается конструктивным элементом, требующим большей надежности и долговечности.

Объем материала, снимаемого во время конкретной операции, определяется надежностью соединения станка и режущего инструмента, которое должно выдерживать высокие нагрузки, оставаясь достаточно прочным даже в случае сильного изгиба инструмента или возникновения колебаний.

Более стабильная скорость съема металла (MRR).
Благодаря сочетанию высокой силы зажима и оптимального уровня интерференции KM4X обеспечивает прочное шпиндельное соединение с высокой жесткостью и максимальной стойкостью к изгибающим нагрузкам. Это повышает надежность и производительность станка при обработке твердых сплавов и других материалов

Шпиндели способны передавать определенный момент вращения, при этом силы резания создают также и изгибающие моменты, которые превышают установленные для соединения пределы еще до достижения максимального крутящего момента. Это наблюдается при торцовом фрезеровании, где вылет обычно больше, а ограничивающим фактором является стойкость шпиндельного соединения к изгибу. Например, 80-миллиметровая фреза с винтовыми зубьями и сменными режущими пластинами, выступающая за торец шпинделя на 250 мм, создает изгибающий момент 4620 Нм и крутящий момент до 900 Нм при обработке Ti6Al4V со скоростью 360 см 3 /мин, шириной резания 12,7 мм и глубиной резания 63,5 мм.

Благодаря сочетанию высокой силы зажима и оптимального уровня интерференции, новое поколение шпиндельных соединений KM4X компании обеспечивает надежность, чрезвычайно высокую жесткость и значительную стойкость к изгибающему усилию. В случае с инструментами для обработки титана это подразумевает значительное увеличение производительности станка при обработке твердых сплавов, возможность развития невероятно высокой скорости съема металла и получение большего количества готовых деталей за смену.

Инженер-аналитик Fives Cincinnati Роберт Снодграсс (Robert Snodgrass) совместно с главным менеджером по работе с клиентами компании Kennametal Майком Малоттом (Mike Malott) начал изучать характеристики KM4X примерно 4 года назад. «Инженерная концепция меня поразила, – вспоминает Снодграсс. – Она однозначно дала нам понять, что возможности проектирования станков безграничны: повышенная жесткость шпинделя позволяет не только удовлетворить требования клиентов к более эффективному процессу резания, но и увеличить объем выпускаемой продукции».

Прогресс в контурной обработке.
Процесс контурной обработки титана

Вице-президент компании Kennametal Марк Хастон (Mark Huston) поясняет: «Следует помнить, что типичные элементы конструкции самолетов делают из поковок, снимая значительное количество материала для получения готовых деталей с необходимыми параметрами. Коэффициент использования материала – отношение веса закупленного сырья к весу готовой детали – может быть 4:1, 8:1 и даже больше, в зависимости от детали».

Ввиду своей конструкции и ограничений шпиндельного соединения первое поколение контурно-фрезерных станков Cincinnati обеспечивало скорость съема металла до 4 кубических дюймов в минуту при обработке титановых деталей. Новое поколение станков Cincinnati XT в сочетании с торцевым шпиндельным соединением HSK 125 позволило увеличить эту скорость до 50 дюймов, а с появлением KM4X100 ее удалось удвоить до 100 кубических дюймов в минуту.

«Даже при 100 кубических дюймах в минуту результаты оценочных испытаний станков XT с использованием KM4X были гораздо ниже по сравнению с теоретическими пределами стойкости к изгибающему моменту», – добавил Снодграсс. Отметив, что при тестировании предыдущего поколения использовались резцедержатели с конусом CAT60, он сравнил использование 50-конусной версии с «вождением танка и внедорожника». Соединение KM4X помогло достичь в два раза большей скорости съема металла, чем при использовании 60-конусного резцедержателя. По сравнению с CAT50, HSK100 или KM4X100, CAT60 весит почти в два раза больше.

Максимальный крутящий момент, максимальная мощность.
При тестовом проходе шпиндельное соединение проходит испытание максимальным моментом вращения и силами резания. Однако это не проблема для контурно-фрезерного станка Fives Cincinnati XT со шпиндельным соединением KM4X

Менеджер по продукции компании Fives Cincinnati Кен Уичмен (Ken Wichman) заметил: «Это новое слово в конструировании шпинделей и станков. Во многих портальных станках используется ручная смена инструмента, даже при наличии устройства автоматической смены/магазина. Увеличение стойкости к изгибающему моменту в KM4X позволяет использовать более легкие инструменты, чем в случае с CAT или HSK с таким же пределом стойкости. С точки зрения эргономики это огромное преимущество для оператора. Клиенту, выбравшему автоматическую смену инструмента, KM4X позволит вместить большее количество инструментов в имеющееся пространство».

Вопрос финишной обработки закаленной стали решается в современном производстве в основном абразивной обработкой. До последнего времени это объяснялось разным уровнем оборудования для шлифования и лезвийной обработки. Токарные станки не могли гарантировать ту же точность, что достигалась на шлифовальных станках. Но сейчас современные станки с ЧПУ имеют достаточную точность перемещений и жесткость, поэтому доля токарной и фрезерной обработки твердых материалов постоянно расширяется во многих отраслях. Точение закаленных заготовок стало применяться в автомобильной промышленности с середины восьмидесятых годов прошлого века, но сегодня в этом виде обработки начинается новая эра.

Термообработанные заготовки

Множество стальных деталей требует термообработки или поверхностного упрочнения для приобретения дополнительной износостойкости и способности выдерживать значительные нагрузки. К сожалению, высокая твердость негативно отражается на обрабатываемости таких деталей. Детали зубчатых передач и различные валы и оси - типичные закаленные детали, обрабатываемые точением, фрезерованию в закаленном виде подвергаются штампы и пресс-формы. Термообработанные детали - тела качения, как правило, требуют чистовой и финишной обработки, которая убирает погрешности формы и обеспечивает требуемую точность и качество поверхностей. Что касается деталей штампов и пресс-форм, то сейчас есть тенденция к их обработке в закаленном состоянии уже на стадии черновой обработки. Это приводит к значительному сокращению времени изготовления штампа.

Обработка твердых материалов

Обработка деталей после термообработки - вопрос, требующий гибкого подхода. Диапазон решений зависит от типа инструментального материала, выбранного для обработки. Для инструмента способность обрабатывать твердые материалы означает - высокую термостойкость, высокую химическую инертность, стойкость к абразивному износу. Такие требования к инструментальному материалу определяются самим процессом обработки. При резании твердых материалов на режущую кромку оказывается высокое давление, что сопровождается выделением большого количества тепла. Большие температуры помогают процессу, приводя к разупрочнению стружки, тем самым, снижая силы резания, но отрицательно влияют на инструмент. Поэтому далеко не все инструментальные материалы подходят для обработки термообработанных деталей.

Твердые сплавы используются для обработки материалов твердостью до 40HRc. Для этого рекомендуются мелкозернистые твердые сплавы с острой режущей кромкой, хорошо сопротивляющиеся абразивному износу и обладающие высокой термостойкостью и стойкостью к пластической деформации. Такие свойства имеют твердые сплавы без покрытий, например H13A производства фирмы Sandvik Coromant. Но также можно успешно использовать сплавы с износостойкими покрытиями для чистовой обработки и областью применения P05 и К05, например GC4015, GC3005.

Самая неудобная для обработки резанием заготовка - это заготовка с твердостью 40…50HRc. Твердые сплавы при работе в этом диапазоне уже не устраивают по своей термостойкости. В то же время, КНБ и керамика быстро изнашивается, т.к. из-за недостаточной твердости обрабатываемого материала на передней поверхности инструмента образуется нарост, вызывающий сколы режущей кромки при его срыве. Поэтому проблема выбора инструментального материала для работы в этом диапазоне твердости решается на основе экономических соображений. В зависимости от серийности производства приходится либо мириться с низкой производительностью и размерной точностью при работе твердым сплавом, либо более производительно работать керамикой и КНБ, но с риском поломки пластины.

При более высокой твердости 50-70HRс выбор однозначно склоняется в сторону обработки с использованием инструмента с режущей частью из керамики или кубического нитрида бора. Керамика позволяет производить даже прерывистую обработку, но обеспечивает несколько большую шероховатость поверхности, чем КНБ. При обработке КНБ может быть достигнута шероховатость до 0,3Ra, в то время как керамика создает поверхность шероховатостью 0,6Ra. Это объясняется различными моделями износа инструментального материала: КНБ имеет в нормальных условиях равномерный износ по задней поверхности, а на керамике образуются микровыкрашивания. Таким образом, КНБ сохраняет линию режущей кромки непрерывной, что позволяет получать лучшие значения шероховатости обработанной поверхности. Режимы резания при обработке закаленных материалов варьируется в довольно широких пределах. Это зависит от материала заготовки, условий обработки и требуемого качества поверхности. При обработке заготовки с твердостью 60HRc новыми марками кубического нитрида бора СВ7020 или СВ7050 скорость резания может достигать 200 м/мин. СВ7020 рекомендуется для финишной обработки с непрерывным резанием, а СВ7050 для чистовой обработки термообработанных материалов в неблагоприятных условиях, т.е. с ударами. Пластины из указанных марок выпускаются с тонким покрытием из нитрида титана. По мнению фирмы Sandvik Coromant данная мера позволяет значительно проще контролировать износ пластин. Фирмой также выпускаются пластины из аналогичных марок кубического нитрида бора CB20 и CB50, но без покрытия.

Для обработки закаленных сталей обычно используются различные сорта керамики. Фирма Sandvik Coromant в настоящее время выпускает все виды керамики и активно ведет разработки новых марок. Оксидная керамика СС 620 выпускается на основе оксида алюминия с небольшими добавками оксида циркония для повышения прочности. Она обладает самой высокой износостойкостью, однако может использоваться только хороших условиях из-за невысокой прочности и теплопроводности. Более универсальна смешанная керамика СС650 на основе оксида алюминия с добавками карбида кремния. Она обладает более высокой прочностью и хорошей теплопроводностью, что позволяет использовать ее даже при прерывистой обработке. Наибольшей прочностью обладает так называемая вискеризованная керамика СС670. В состав которой, также входит карбид кремния, но в виде длинных кристаллических волокон, которые пронизывают основной материал. Основная область применения этой марки керамики - обработка жаропрочных сплавов на никелевой основе, но вследствие высокой прочности она применяется и для обработки закаленной стали в неблагоприятных условиях. Режимы резания при использовании пластин из керамики также как и в случае в кубическим нитридом бора варьируются в широких пределах. Это объясняется в большей степени не различиями в свойствах инструментального материала, а разнообразием условий обработки, когда достигается достаточный нагрев в зоне резания и соответственно снижение усилий и износа. Обычно оптимальная скорость резания лежит в диапазоне 50-200 м/ мин. Причем не обязательно снижение скорости резания приводит к повышению стойкости, как в случае с твердым сплавом.

Новые возможности

Производительность при обработке закаленных материалов до сего момента достигалась за счет изменения конструкции инструмента и усовершенствования оборудования. Сейчас, новые инструментальные материалы позволяют работать с высокими скоростями, а геометрия режущей части достигать высоких значений рабочих подач. Кроме того, возможность обработки деталей за один установ при токарной или фрезерной обработке дает значительное снижение вспомогательного времени.

Величина подачи зависит от геометрии вершины режущего инструмента. Для инструментов с вершиной оформленной по радиусу, подача оказывается жестко связанной с требованием обеспечения заданного качества поверхности. Обычное значение подачи 0,05…0,2 мм/об. Но сейчас на рынке появились пластины, именуемые Wiper, которые позволяют увеличить её. При обработке такими пластинами значение подачи на практике может быть увеличено вдвое, причем качество поверхности не пострадает. Эффект Wiper возникает за счет модификации вершины пластины и создания специальной зачистной режущей кромки большого радиуса, которая является продолжением основного радиуса скругления. Зачистная режущая кромка обеспечивает при работе пластины минимальный вспомогательный угол в плане, что позволяет увеличивать рабочую подачу без потери качества обработанной поверхности. При увеличении подачи вдвое сокращается и путь резания, а соответственно и износ пластины. Революционность этого решения в том, что повышение производительности достигается одновременно с увеличением ресурса инструмента.

Пластины Wiper были впервые предложены фирмой Sandvik Coromant и сейчас находят все большее распространение. Так, для пластин из КНБ и керамики уже существует два варианта геометрии Wiper. Геометрия WH - основная геометрия позволяющая достигнуть максимальной производительности. Дополнительная геометрия WG создаёт низкие усилия резания и применяется для высокоскоростной обработки при высоких требованиях к качеству обработанной поверхности.

Пластины Wiper из КНБ и керамики выводят чистовую и финишную обработку закаленных материалов на новые уровни производительности.

Основные преимущества обработки закаленных материалов точением:

  • высокая производительность за счет высоких скоростей резания и снижения вспомогательного времени;
  • высокая гибкость применения;
  • процесс проще, чем шлифование;
  • нет прижогов;
  • минимальные коробления заготовки;
  • дополнительное повышение производительности за счет высоких значений подачи при использовании пластин Wiper;
  • возможность унификации оборудования для полной обработки детали;
  • безопасный и экологически чистый процесс обработки.

Одной из самых эффективных способов резки и обработки твердых материалов является гидроабразивная резка. С ее использованием можно резать такие твердые материалы как мрамор и гранит, металл, бетон и стекло. Данный вид резки широко применяется в строительстве при обработке композитных и керамических материалов, сендвич-конструкций.

Метод гидроабразивной резки заключается в узконаправленной струе воды под большим давлением, бьющей на высокой скорости по материалу. Изначально использовалась только вода, и метод назывался водоструйной резкой. Она применялась для обработки не слишком твердых материалов, которым требовалась более деликатное воздействие, чем при других видах резки. Это было оптическое волокно и кабели, ламинированные материалы, не терпящие высоких температур и возникновения пожароопасной ситуации.

Позже в воду начали добавлять абразив, который значительно усилил режущую силу водяной струи. В качестве абразива используются мелкодисперсный гранатовый песок. С использованием абразивных частиц стало возможным нарезать гораздо более твердые материалы, такие как горные породы и металлы.

В связи с этим гидроабразивная резка широко используется в различных сферах промышленности, в строительстве и при изготовлении памятников. Зачастую для изготовления памятников используется гранит, и цены на памятники в Москве позволяют сделать выбор на любой кошелек. Однако не все задумываются о том, что при заказе памятника имеет значение не только стоимость материала и работы, но и способ обработки.

Гидроабразивную резку можно назвать очень щадящей в том смысле, что нет интенсивного воздействия на материал, а значит, его прочность не снижается. На заказ памятников цены складываются исходя в том числе из способа резки и обработки камня. Гидроабразивная резка позволяет избежать трещин и сколов, а также минимизирует потерю камня при обработке. Это лишь одно из преимуществ гидроабразивной резки.

Гидроабразивная резка: преимущества и особенности

1. Отсутствие сильного нагрева материала

Этот параметр критичен как для металла, так и для природного и искусственного камня, плитки. При резке водяной струей с абразивом температура сохраняется в диапазоне 60-90ºС. Таким образом, материал не подвергается воздействию высоких температур, как при других видах резки, что увеличивает его срок эксплуатации.

2. Универсальность применения

При помощи гидроабразивного "лезвия" можно одинаково успешно разрезать как твердые, так и средней твердости материалы. Правда, в случае работы с последними абразив использовать не нужно.

3. Отличное качество реза

Шероховатость кромки среза при использовании гидроабразивной резки — Ra 1,6. Использование этого способа поможет получить четкий срез без лишней пыли и потери материала.

4. Пожаробезопасность

Все компоненты, используемые при резке, пожаро- и взрывобезопасны в том числе и за счет низкой температуры. При резке не используются воспламеняющиеся вещества, что существенно снижает риск при работе.

5. Отсутствие оплавления материала

Это свойство также вытекает из температуры при разрезе. При резке материал не пригорает ни в прилегающих зонах, ни непосредственно на срезе, что особенно актуально при работе с металлами.

6. Многопрофильное использование

Используя гидроабразивную резку, можно разрезать как лист стали толщиной 200 мм, так и множество тонких листов, сложенных вместе. Это позволяет экономить время и повышает производительность.

К недостаткам можно отнести дороговизну расходного материала (а именно песка) и ограниченный ресурс режущей головки и некоторых других комплектующих станка. Станок для гидроабразивной резки состоит из насоса (нескольких), в которых нагнетается вода под давлением до 4000 бар, сопла, смесительной камеры и второго твердосплавного сопла.

Как происходит гидроабразивная резка:

При помощи насоса закачивается вода под давлением до 4000 бар;

ФPAГMEHT КНИГИ (...) § 81. ОБРАБОТКА РЕЗАНИЕМ МЕТАЛЛОКЕРАМИЧЕСКИХ МАТЕРИАЛОВ И ПОКРЫТИИ
Обработка резанием металлокерамических деталей (керметов), заготовки которых получают методами порошковой металлургии, занимает при их изготовлении значительное место. Это объясняется, с одной стороны, необходимостью получения более сложных форм, чем это допускает прессование, например деталей с двумя буртами, отверстиями, перпендикулярными движению пуансонов, и взаимно перекрещивающимися осями, выточками, фасками, канавками, резьбой, и, с другой стороны, получением издлий с точностью более 4 - 5-го классов, а также удешевлением производства в тех случаях, когда применить обработку резанием проще, чем использовать сложные пресс-формы.
Твердые fплавы являются весьмараспространенной разновидностью металлокерамических материалов; из них изготавливают, например, штампы, инструменты. Для их резания наиболее часто применяют электроэрозионную, анодно-абразивную, ультразвуковую и механическую обработки.
Электроэрозионный метод является эффективным средством обработки твердых сплавов. Твердые сплавы хорошо режутся высокочастотной ЭЭО с использованием в качестве инструмента непрерывно движущейся проволоки. Так, сплав ВК20 обрабатывается медной проволокой диаметром 0,2 мм с натяжением 500 г при скорости перемотки 3 мммин на режимах мкф получаемая скорость обработки при толщине детали 5 мм - 0,65 мммин .
Анодно-абразивная обработка применяется для изготовления высокоточных твердосплавных деталей. Для этого питание обычных модернизированных шлифовальных станков производится от источников постоянного тока (машинных генераторов или выпрямителей) с напряжением 25 - 30 в. Рабочей средой является смесь масел. Ступенчатым изменением силы тока в пределах 3 - 800 а задается последовательное изменение условий обработки от черновой, обеспечивающей съем основного припуска и чистоту 5-го класса, До чистовой, дающей чистоту 9-го класса; затем осуществляется доводка абразивом до 11-го класса. Анодно-абразивную обработку применяют для заточки твердосплавных инструментов (табл. 77 - данные А. Г. Рябинюка).
Механическую обработку твердых сплавов производят лезвийным и абразивным инструментами. Основным методом обработки твердосплавных вставок для холодновысадочного инструмента является абразивное и алмазное шлифование: оно применяется для получения плоских, круглых наружных и внутренних (П>5-г-8 мм) и также фасонных поверхностей и обеспечивает при производительности 40 - 100 мм3мин точность 1-го класса и чистоту поверхности до 13-го класса.
Получение цилиндрических наружных поверхностей на деталях из твердых сплавов производится шлифованием кругами карбида кремния зеленого и алмазными кругами, а отрезка заготовок - алмазными отрезными кругами и электроэрозионным методом. Снятие материала срезаемогс слоя при шлифовании твердых сплавов кругами из карбида кремния зеленого происходит путем вырывания из основного материала, дробления и раскалывания зерен карбида вольфрама. Эти процессы сопровождаются высокой температурой (~ 1500°С), которая вызывает размягчение и оплавление относительно более легкоплавкой кобальтовой связи, ее окисление и образование микротрещин. Этй явления приводят к низкому качеству поверхности. При алмазном шлифовании вследствие высокой твердости и остроты режущих кромок снятие материала происходит путем среза; температура в зоне резания в этом случае много ниже (500 - 600°С); все это способствует высокому качеству поверхности.
Лезвийный инструмент на ряде операций изготовления изделий из твердых сплавов показывает высокую эффективность. Установлено, что твердые сплавы в состоянии всестороннего неравномерного сжатия могут пластически деформироваться . Деформация протекает путем смещения отдельных блоков кристаллитов карбидной фазы, сдвигов в них, а также дробления карбидных зерен. Процесс резания твердых сплавов, так же как и других материалов, основан на разности твердостей заготовки и инструмента; однако у них степень пластической деформации в зоне стружкообразования небольшая. При обработке сплавов с содержанием кобальта свыше 15% образуется стружка надлома, отдельные куски которой состоят из сдвинутых слоев. Температура резания твердых сплавов составляет 300 - 370° С; это обеспечивает отсутствие микротрещин и структурных превращений. Поверхностный слой твердого сплава после обработки резанием представляет собой уплотненный тонкий слой, под которым располагаются зерна сплава, претерпевшие срез, скол и пластическую деформацию.
Точение твердосплавных вставок штампов из сплавов ВК20, ВК25 производится резцами, оснащенными пластинками сплава ВКЗМ, которые укреплены пайкой латунью «7162. Рекомендуются следующие режимы: для чернового точения t=0,2 - 0,5 мм,
so = 0,3-j-0,5 ммоб, v = 2-1-3 ммин для чистового =0,2 - 0,3 мм, s0=0,08-i-0,12 ммоб, о=3 - 4 ммин. Отрезка ведется на режимах so=0,05 ммоб, о = 4 - 5 ммин.
Металлокерамические пористые материалы широко применяют для изготовления подшипников скольжения; по уровню допустимых скоростей резания они также относятся к труднообрабатываемым. Так, если скорость резания, соответствующая 20-минутной стойкости твердосплавного (ВК8) резца, при обработке молибдена равна 100 ммин, то при точении пористого железографита марки ЖГЗ она не превышает 25 - 45 ммин. Наиболее распространены пористые материалы на основе железа и меди. Материалы на железной основе имеют поры неправильной формы, сообщающиеся друг с другом. Для бронзографйта характерны сфероидальные поры, обособленные друг от друга, вследствие чего при механической обработке деформация поверхностного слоя больше.
Обработка резанием пористых материалов затруднена вследствие нестабильности процесса резания из-за несплошности материала, пониженной теплопроводности, приводящей к высоким температурам в зоне резания (до 600°С), повышенной склонности к окислению; образующиеся окислы железа оказывают повышенное абразивное воздействие на инструмент.
По обрабатываемости пористые материалы ближе к чугунам; износ инструмента при их обработке происходит также только по задней поверхности. Учитьщая ухудшение Антифрикционных свойств подшипников при обработке затупленным инструментом, критерий затупления относительно мал: г3 = 0,4-0,5 мм.
Требования к механической обработке определяются назначением поверхности - для поверхностей скольжения необходим свободный доступ смазки в зону трения, т. е. мало деформированная поверхность, для неподвижных соединений нужна уплотненная поверхность, обеспечивающая необходимую прочность сопряжения. Поэтому режимы обработки по качеству получаемой поверхности делятся на неуплотняющие и уплотняющие .
Наиболее пригодны для обработки пористых материалов твердые сплавы марок ВК8, ВКЗМ, ВК6М. Скорость резания при обработке пористых металлокерамических материалов должна быть достаточно большой, чтобы выйти за зону наростообразования и обеспечить однородную шероховатость с умеренным наклепом материала поверхностного слоя. Учитывая это, при пористости обрабатываемого материала 15% скорость резания равна 85 - 250 mSmuh, при пористости 20% v= 100 - 400 ммин, при пористости 30% и=110 - 500 ммин. Подачи должны быть небольшие: при обработке высокопористых материалов (больше 25%) s0 = =0,035 ммоб, низкопористых - so=0,07 ммоб.
Металлокерамические материалы, получаемые стеканием смеси порошков металлов и их сплавов (AI2O3 - Al, AI2O3 - Cr, TiC - Ni, ZrC - Fe, Si - S), находят значительное промышленное применение; обрабатываемость резанием даже таких малопроуных, как железографитовые (Fe + ,+ Cu + C), как правило, значительно хуже, чем стали 40 X и серого чугуна СЧ 15 - 32 . Это объясняется тем, что при точении этих материалов температура резания высока, несмотря на их более низ-- ; кие прочность и пластичность, а также величины действующих сил резания. Повышение температуры получается вследствие значительно меньшей (1,5 - 2 раза) теплопроводности. Кроме того, плохая обрабатываемость резанием объясняется их более высокой истирающей способностью и также неблагоприятными условиями работы инструментального материала, обусловленными периодическим усталостным воздействием пор.
Обрабатываемость металлокерамических материалов определяется прежде всего структурой; наилучшей обрабатываемостью обладают материалы с ферритной структурой, затем, в порядке ухудшения, идут структуры фрритоперлитные, перлитные и перлитные с включением цементита. Значительное влияние на обрабатываемость оказывает форма частиц цементита, входящего в перлит; зернистый перлит обеспечивает более высокую стойкость по сравнению с пластинчатым. Это объясняется тем, что температура резания возрастает с увеличением содержания перлита и включений цементита в структуре металлокерамических материалов и, наоборот, снижается с увеличением количества феррита. Кроме того, соотношение показателей истирающей способности металлокерамических материалов с различными структурами аналогично обычным сталям; наименьшую истирающую способность показывает зернистый перлит, наибольшую - пластинчатый.
Обрабатываемость металлокерамических изделий зависит также от их пористости и степени пропитки маслом; повышение пористости с 15 до 30% увеличивает скорость резания v60 при точении заготовок, пропитанных маслом, на 50% и непропитанных - на 20%. Это объясняется тем, что повышение пористости ведёт к снижению температуры резания на 154-20°. Пропитка маслом также увеличивает значение о6о с 20% (при одной и той же пористости 15%) до 50% (при пористости 30%). Влияние пропитки маслом на повышение скорости резания больше для металлокерамических материалов, не содержащих графит, так как в последнем слуаае температура резания в 1,4-4-1,5 раза выше. Это объясняется тем, что графит играет роль смазки, при этом эффективность смазывающего и охлаждающего действия масла уменьшается. При использовании пропитки маслом как средства повышения производительности надо учитывать, что оно ухудшает санитарно-гигиенические условия выполнения операции, поскольку в процессе резания масло выгорает и его шары загрязняют атмосферу.
Металлические покрытия находят широкое применение как средство повышения жаростойких, износостойких и антикоррозионных характеристик деталей. Покрытия наносятся различу ными путями, обычно электрометаллизацией распылением. Наиболее часто обработку покрытий резанием осуществляют точением и шлифованием; это объясняется особенностями обрабатываемых изделий, а также тем, что обработка покрытий другими способами-(сверлением, фрезерованием, строганием) связана с определенными трудностями, обусловленными интенсивными выкрашиваниями обрабатываемого слоя.
Отличительной особенностью строения металлических покрытий является их слоистость - частицы металла сильно вытянуты и разделены между собой пленками окислов. Помимо этого, материал имеет большую пористость и неоднородность строения, в нем находятся оксиды, нитриды й другие химические соединения, имеющие высокую твердость. Напыленный металл по сравнению с исходным обладает большой хрупкостью. Твердость напыленного металла значительно выше исходного. Так, при нанесении низко-углеродистой стали твердость покрытия выше на 35-т-60%, а микротвердость вследствие наличия пор и трещин еще больше (в несколько раз). Все это приближает свойства покрытий к свойствам литого металла; однако они имеют свои специфические особенности. Характерными особенностями обработки резанием металлических покрытий являются:
1) хрупкость обрабатываемого материала; вызывает специфический процесс стружкообразования (см. стр. 46), когда нагрузки от процесса резания сосредоточиваются непосредственно у режущей кромки. Концентрация напряжений вызывает повышенный износ резцов у вершины. Во избежание выкрашивания поверхностного слоя не следует обрабатывать у деталей острые кромки и резкие переходы;
2) высокое истирающее (абразивное) воздействие на рабочие поверхности инструмента; оно обусловлено наличием в обрабатываемом покрытии мельчайших включений высокой твердости, которые препятствуют также пластической деформации в процессе стружкообразования; %
3) пониженная теплопроводность покрытий вследствие их пористости и наличия окислов; в результате этого при обработке резанием покрытий часто имеют место прижоги; для их устранения следует применять эффективные охлаждающие жидкости;
4) трудность получения поверхностей высокой чистоты вследствие специфического строения металлизационного слоя. Износ инструмента в процессе обработки вызывает местные разрушения поверхности покрытия: ее выкрашивание, отслаивание, появление чешуек.
Шлифование покрытий имеет отличительную особенность - быстрое засаливание круга; кроме того, пониженная теплопроводность покрытий при шлифовании часто приводит к образованию прижогов. Во избежание этого следует применять жидкости, обладающие эффективным охлаждающим дёйствием.

Выбор связки абразивного инструмента

Связка определяет прочность и твердость инструмента, оказывает большое влияние на режимы, производительность и качество обработки. Связки бывают неорганические (керамическая) и органические (бакелитовая, вулканитовая).
КЕРАМИЧЕСКАЯ СВЯЗКА обладает высокой огнеупорностью, водостойкостью, химической стойкостью, хорошо сохраняет профиль рабочей кромки круга, но чувствительна к ударным и изгибающим нагрузкам. Инструмент на керамической связке применяют для всех видов шлифования кроме обдирки (из-за хрупкости связки): для резки и прорезки узких пазов, плоского шлифования желобов колец шарикоподшипников. Инструмент на керамической связке хорошо сохраняет профиль, имеет высокую пористость, хорошо отводит тепло.
БАКЕЛИТОВАЯ СВЯЗКА обладает более высокой прочностью и упругостью, чем керамическая. Абразивный инструмент на бакелитовой связке может быть изготовлен различных форм и размеров, в том числе и очень тонких — до 0,5 мм для и прорезных работ. Недостатком бакелитовой связки является невысокая стойкость против действия охлаждающих жидкостей, содержащих щелочные растворы. При на бакелитовой связке охлаждающая жидкость не должна содержать более 1,5 % щелочи. Бакелитовая связка имеет более слабое, чем керамическая, сцепление с абразивным зерном, поэтому инструмент на этой связке широко используется на операциях плоского шлифования, где необходимо самозатачивание круга. Инструмент на бакелитовой связке применяют для грубых обдирочных работ, выполняемых в ручную и на подвесных стенках: плоского шлифования торцом круга, отрезки и прорезки пазов, заточки инструментов, при обработке тонких изделий, где опасен прижог. Бакелитовая связка оказывает полирующее действие.

Выбор марки абразивного материала

Абразивные материалы (фр. abrasif - шлифовальный, от лат. abradere - соскабливать) - это материалы, обладающие высокой твердостью, и используемые для обработки поверхности различных материалов. используются в процессах шлифования, заточки, полирования, разрезания материалов и широко применяются в заготовительном производстве и окончательной обработке различных металлических и неметаллических материалов. Естественные абразивы — кремень, наждак, пемза, корунд, гранат, алмаз и другие. Искусственные: электрокорунд, карбид кремния, боразон, эльбор, синтетический алмаз и другие.

ЭЛЕКТРОКОРУНД НОРМАЛЬНЫЙ

Обладает отличной теплостойкостью, высокой сцепляемостью со связкой, механической прочностью зерен и значительной вязкостью, что важно для выполнения операций с переменными нагрузками Обработка материалов с высоким сопротивлением разрыву. Это обдирка стальных отливок, проволок, проката, высокопрочных и отбеленных чугунов, ковкого чугуна, получистовая обработка различных деталей машин из углеродистых и легированных сталей в незакаленном; и закаленном виде, марганцовистой бронзы, никелевых и алюминиевых сплавов.25A

ЭЛЕКТРОКОРУНД БЕЛЫЙ

По физическому и химическому составу более однородный, обладает более высокой твердостью, острыми кромками, хорошей самозатачиваемостью, лучше устраняет шероховатости обрабатываемой поверхности по сравнению с электрокорундом нормальным Обработка закаленных деталей из углеродистых, быстрорежущих и нержавеющих сталей, хромированных и нитрированных поверхностей. Обработка тонких деталей и инструментов, заточка, плоское, внутреннее, профильное и отделочное шлифование.38А

ЭЛЕКТРОКОРУНД ЦИРКОНИЕВЫЙ

Мелкокристаллический, плотный и прочный материал. Стойкость инструмента на обдирочных операциях в 10-40 раз выше аналогичного инструмента из электрокорунда нормального Обдирочное шлифование стальных заготовок при высокой скорости, подаче и усилии прижима. Силовое обдирочное шлифование стальных заготовок.54C

КАРБИД КРЕМНИЯ ЧЕРНЫЙ

Обладает высокой твердостью, абразивной способностью и хрупкостью. Зерна имеют форму тонких пластинок, из-за чего увеличивается их хрупкость в работе.Обработка твердых материалов с низким сопротивлением разрыву (чугун, бронзовое и латунное литье, твердые сплавы, драгоценные камни, стекло, мрамор, графит, фарфор, твердый каучук, кости и т.п.), а также очень вязких материалов (жаропрочных сталей, сплавов, меди, алюминия резины).63C

КАРБИД КРЕМНИЯ ЗЕЛЕНЫЙ

Отличается от карбида кремния черного повышенной твердостью, абразивной способностью и хрупкостью Для обработки деталей из чугуна, цветных металлов, гранита, мрамора, твердых сплавов, обработки титановых, титано-танталовых твердых сплавов, хонинговальные, доводочные работы для деталей из серого чугуна, азотированной и шарикоподшипниковой стали.95А

ЭЛЕКТРОКОРУНД ХРОМТИТАНИСТЫЙ

Обладает более высокой механической прочностью и абразивной способностью по сравнению с электрокорундом нормальным

Обдирочное шлифование с большим съемом металла

Выбор зернистости инструмента

Зернистость Вид обработки
Крупная F6-F24 Обдирочные операции с большой глубиной резания, зачистка заготовок, отливок.
Обработка материалов, которые вызывают засаливание поверхности круга (латунь, медь, алюминий).
F24 — F36 Плоское шлифование торцом круга, заточка резцов, правка абразивного инструмента, отрезка.
Средняя F30 — F60 Предварительное и комбинированное шлифование, заточка режущего инструмента.
F46 — F90 Чистовое шлифование, обработка профильных поверхностей, заточка мелкого инструмента, шлифование хрупких материалов.
Мелкая F100-F180

Отделочное шлифование, доводка твердых сплавов, доводка режущего инструмента, стальных заготовок, заточка тонких лезвий, предварительное хонингование.

Крупнозернистые инструменты применяются:
— при обдирочных и предварительных операциях с большой глубиной резания, когда удаляются большие припуски;
— при работе на станках большой мощности и жесткости;
— при обработке материалов, которые вызывают заполнение пор круга и засаливание его поверхности, например при обработке латуни, меди и алюминия;
— при большой площади контакта круга с обрабатываемой деталью, например при использовании высоких кругов, при плоском шлифовании торцом круга, при внутреннем шлифовании.
Средне- и мелкозернистые инструменты применяются:
— для получения шероховатости поверхности 0,320-0,080 мкм;
— при обработке закаленных сталей и твердых сплавов;
— при окончательном шлифовании, заточке и доводке инструментов;
— при высоких требованиях к точности обрабатываемого профиля детали.
С уменьшением размера абразивных зерен повышается их режущая способность за счет возрастания числа зерен на единице рабочей поверхности, уменьшения радиусов округления зерен, меньшего износа отдельных зерен. Уменьшение размера зерен приводит к значительному уменьшению пор круга, что вызывает необходимость снижения глубины шлифования и величины снимаемого на операции припуска. Чем мельче абразивные зерна в инструменте, тем меньше в единицу времени снимается материала с обрабатываемой заготовки. Однако, мелкозернистые инструменты обладают меньшей способностью к самозатачиванию по сравнению с инструментом более крупной зернистости, в результате чего быстрее притупляются и засаливаются. Рациональное сочетание режима обработки, правки инструмента и зернистости позволяет получать высокую точность и отличное качество обработки поверхности.

Выбор твердости инструмента

O, P, Q Профильное шлифование, обработка прерывистых поверхностей, хонингование и резьбошлифование деталей с крупным шагом.Cредняя M-N Плоское шлифование сегментами и кольцевыми кругами, хонингование и резьбошлифование кругами на бакелитовой связке. Cреднемягкая K-L Чистовое и комбинированное круглое, наружное бесцентровое и внутреннее шлифование стали, плоское шлифование, резьбошлифование, заточка режущих инструментов.Мягкая H-F Заточка и доводка режущего инструмента, оснащенного твердым сплавом, шлифование труднообрабатываемых специальных сплавов, полирование.

Твердость инструмента в значительной степени определяет производительность труда при обработке и качество обработанной.
Абразивные зерна по мере их затупления, должны обновляться путем скалывания и выкрашивания частиц. При слишком твердом круге связка продолжает удерживать затупившиеся и потерявшие режущую способность зерна. При этом на работу расходуется большая мощность, изделия нагреваются, возможны их коробления, на поверхности появляются следы огранки, царапины, прижоги и другие дефекты. При слишком мягком круге зерна, не утратившие свою режущую способность, выкрашиваются, круг теряет правильную форму, увеличивается его износ, в результате чего трудно получить детали необходимых размеров и формы. В процессе обработки появляется вибрация, необходима более частая правка круга. Таким образом, следует ответственно подходить к выбору твердости абразивного инструмента и учитывать характеристики обрабатываемых изделий.

© 2024 youmebox.ru -- Про бизнес - Портал полезных знаний